Climate Change and India
Science, Politics and Policy

Navroz K. Dubash
Centre for Policy Research

“Introduction to Audit of Environmental and Sustainable Development Issues”

International Centre for Environmental Audit and Sustainable Development (iCED)
September 18, 2014
Why Care About Climate Change?

• Strong scientific consensus
• Linkage to other environmental outcomes
 – Physical linkages
 – Policy linkages
• Outline
 – Science
 – Global Politics
 – Indian Policy
Complexities of Climate Science
It’s not that simple...

IPCC (2007)
Observed Temperature Increase 1850-2012

Source: IPCC, 2013
CO2 is increasing steadily

Source: IPCC, 2013
Pace of increase in GHGs not occurred for 10,000 years

Source: IPCC, 2007
Models with CO2 forcing better track recent trends in temperature, ocean heat and ice.

Source: IPCC, 2013
Projections of late 21st Century Effects

Source: IPCC, 2013
Examples of Climate Impacts

<table>
<thead>
<tr>
<th>Source: IPCC, 2007</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Global average annual temperature change relative to 1980-1999 (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WATER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased water availability in moist tropics and high latitudes</td>
</tr>
<tr>
<td>Decreasing water availability and increasing drought in mid-latitudes and semi-arid low latitudes</td>
</tr>
<tr>
<td>Hundreds of millions of people exposed to increased water stress</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECOSYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 30% of species at increasing risk of extinction</td>
</tr>
<tr>
<td>Most corals bleached</td>
</tr>
<tr>
<td>Widespread coral mortality</td>
</tr>
<tr>
<td>Terrestrial biosphere tends toward a net carbon source as: ~15%</td>
</tr>
<tr>
<td>~40% of ecosystems affected</td>
</tr>
<tr>
<td>Ecosystem changes due to weakening of the meridional overturning circulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FOOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex, localised negative impacts on small holders, subsistence farmers and fishers</td>
</tr>
<tr>
<td>Tendencies for cereal productivity to decrease in low latitudes</td>
</tr>
<tr>
<td>Productivity of all cereals decreases in low latitudes</td>
</tr>
<tr>
<td>Tendencies for some cereal productivity to increase at mid- to high latitudes</td>
</tr>
<tr>
<td>Cereal productivity to decrease in some regions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COASTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased damage from floods and storms</td>
</tr>
<tr>
<td>About 30% of global coastal wetlands lost</td>
</tr>
<tr>
<td>Millions more people could experience coastal flooding each year</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HEALTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing burden from malnutrition, diarrhoeal, cardio-respiratory and infectious diseases</td>
</tr>
<tr>
<td>Increased morbidity and mortality from heat waves, floods and droughts</td>
</tr>
<tr>
<td>Changed distribution of some disease vectors</td>
</tr>
<tr>
<td>Substantial burden on health services</td>
</tr>
</tbody>
</table>

† Significant is defined here as more than 40%. ‡ Based on average rate of sea level rise of 4.2mm/year from 2000 to 2080.
POLAR REGIONS
- Risks for Ecosystems
- Risks for Health and Well-Being
- Unprecedented Challenges, Especially from Rate of Change

NORTH AMERICA
- Increased Risks from Wildfires
- Heat-Related Human Mortality
- Damages from River and Coastal Urban Floods

THE OCEAN
- Reduced Fisheries Catch Potential at Low Latitudes

CENTRAL AND SOUTH AMERICA
- Reduced Water Availability and Increased Flooding and Landslides
- Reduced Crop Productivity and Livelihood and Food Security
- Vector- and Water-Borne Diseases

SMALL ISLANDS
- Loss of Livelihoods, Settlements, Infrastructure, Ecosystem Services, and Economic Stability
- Risks for Low-Lying Coastal Areas

AFRICA
- Compounded Stress on Water Resources
- Reduced Fish Productivity and Livelihood and Food Security
- Vector- and Water-Borne Diseases

EUROPE
- Increased Flood Losses and Impacts
- Increased Losses and Impacts from Extreme Heat Events
- Increased Water Restrictions

ASIA
- Heat-Related Human Mortality
- Increased Drought-Related Water and Food Shortage

AUSTRALASIA
- Significant Change in Composition and Structure of Coral Reef Systems
- Increased Risks to Coastal Infrastructure and Low-Lying Ecosystems

polar regions
- Very Low
- Medium
- Very High

Risk Level with High Adaptation
- Potential for Additional Adaptation to Reduce Risk

Risk Level with Current Adaptation
- Unprecedented Challenges, Especially from Rate of Change

Present
- Near Term (2030-2040)
- Long Term (2060-2100)
Example of Impacts in India

• Sea level rise in Tamil Nadu
 – 1 m rise => 1000 Km sq
 – Replacement cost of infrastructure = Rs. 500000cr

• Apple cultivation in Himachal Pradesh
 – Apple yields declining at low altitudes, increasing at high altitudes

Source: INCCA, 2010
Take Away Messages…

• Climate change is occurring and will likely accelerate
• Information on specific regional impacts remains limited
• India is one of the more vulnerable countries
 – Monsoon
 – Water scarcity
 – High temperature climate
Why is Tackling Climate Change so Hard?
Contextualizing Climate Change

- **Scale and scope**
 - Current patterns of industrial development depends on fossil fuels

- **Global collective action problem**
 - Uncoordinated action by a few nations cannot solve the problem
 - Breaches policy silos: trade, finance, environment, technology cooperation, energy, forests

- **Political context: Rise of the Global South**
A Numbers Game

<table>
<thead>
<tr>
<th></th>
<th>Cumulative Emissions (1850-2005) % of total</th>
<th>Rank</th>
<th>Annual emissions (2008) – from energy % of total</th>
<th>Rank</th>
<th>Per capita emissions (2008) from energy – tonnes CO2</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>29%</td>
<td>1</td>
<td>19%</td>
<td>2</td>
<td>18.6</td>
<td>9</td>
</tr>
<tr>
<td>EU (27)</td>
<td>30%</td>
<td>2</td>
<td>13%</td>
<td>3</td>
<td>8.0</td>
<td>39</td>
</tr>
<tr>
<td>China</td>
<td>8%</td>
<td>3</td>
<td>24%</td>
<td>1</td>
<td>5.4</td>
<td>61</td>
</tr>
<tr>
<td>Russia</td>
<td>8%</td>
<td>4</td>
<td>5%</td>
<td>4</td>
<td>11.5</td>
<td>16</td>
</tr>
<tr>
<td>Germany</td>
<td>7%</td>
<td>5</td>
<td>3%</td>
<td>7</td>
<td>10.0</td>
<td>25</td>
</tr>
<tr>
<td>India</td>
<td>2%</td>
<td>9</td>
<td>5%</td>
<td>5</td>
<td>1.3</td>
<td>121</td>
</tr>
<tr>
<td>Brazil</td>
<td>1%</td>
<td>23</td>
<td>1%</td>
<td>17</td>
<td>2.1</td>
<td>104</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0.05%</td>
<td>83</td>
<td>0.3%</td>
<td>44</td>
<td>0.3</td>
<td>152</td>
</tr>
</tbody>
</table>

Source: Adapted from CAIT
The Global Pathway and the South’s Dilemma

GDR, EcoEquity and SEI, 2009
THERE IS NO PLANET B
UN Climate Negotiations
A Quick History

• UN Framework Convention on Climate Change 1992
 – Common *but* differentiated responsibility and respective capabilities

• Kyoto Protocol mid 1990s
 – “Annex 1” or developed countries to act
 – US did not ratify

• Copenhagen 2009
 – BASIC countries emerge

• Durban 2011
 – Durban Platform to negotiate an agreement

• The next step: Paris 2015
UN Climate Negotiations
Key Issues for Paris 2015

• Bottom up ‘contributions’ or pledges by all countries – “Intended Nationally Determined Contributions”

• What is the legal nature of contributions
 – Is legal nature the same for all or is it differentiated by developed/developing country?

• How will they be reviewed – monitoring reporting and verification (MRV)?
 – Adequacy
 – Equity

• How much finance will be on the table?

• What agreement will there be on technology?
Big Increase in National Plans and Strategies

Source: Dubash et. Al. Climate Policy, 2013
India’s Dual Interests in Climate Change

• India needs to steeply increase energy consumption in the future to achieve development aspirations =>

 A climate agreement should not unduly restrict our ability to expand energy consumption

• India is among the most vulnerable countries to climate impacts =>

 An effective climate agreement is strongly in India’s interests
What Strategy Might India Adopt?

• Prepare for adaptation at home
 – Climate change is an inescapable part of the context for sustainable development

• Mitigation as part of a co-benefits development focused approach

• Leverage domestic actions to argue for a stringent and effective global global agreement

• Develop our auditing systems and capacity to prepare for “MRV”
Mainstreaming Climate Change
Development, Politics, Governance
Climate and Development Linkages

• Energy efficiency
 – Improves energy security
 – Avoids land and resettlement disputes over mining
 – Lower cost than new power plants

• Water and agriculture
 – Large dams versus small structures?
 – Demand versus supply solutions?
 – Groundwater versus surface water focus?

• Transport
 – Rail versus road freight?
 – Private to public transport?
 – Role of non-motorized transport?
National Action Plan on Climate Change

• A “co-benefits” approach
 – “Actions that promote our development efforts while yielding climate benefits…”
 – How do we “mainstream” climate change?

• Eight missions
 – Solar, Energy Efficiency, Green India mission, Habitat, Water, Sustainable Agriculture, Himalayan, Strategic Knowledge

• Mix of focused objectives and broad goals
 – Solar and energy efficiency most advanced

• No identification of key transformative changes
 – Business as usual mindset
 – Unclear mix of current or future

• No integrative structures but existing silos
NAPCC (Continued)

• Co-benefits, but no clear articulation of how to achieve these
 – No clear sustainable development goals or targets
 – Challenges for audit

• Action items are like a wish list
 – No prioritisation of actions

• Bottom line: A few missions have moved forward but several are ineffectual
SAPCCs: A ‘Door Opener’

• SAPCCs were treated as sustainable development (SD) plans
 – Science of climate change impacts needs to inform SD

• Mitigation was downplayed
 – Concerns about sending wrong signals in negotiations
 – But this risks missing linkages between SD and energy

• Process of plan formulation followed departmental silos in most but not all cases
 – Substantial role for consultants due to limited capacity
SAPCCs: Hard to Implement

• Recommendations are a mix of objectives and actions
 – Driven by departmental knowledge, not integrative thinking
 – Unprioritized and unmatched to clear objectives

• Weak internal capacity for follow up
 – Monitoring implementation
 – Mainstreaming recommendations into functioning of line departments
 – Vague cost estimates
Toward Improved Mainstreaming

• Use plans to identify a ‘directional shift’ in development
 – Include energy in planning
• Ensure plan process breaks silos and enables external inputs
• Use plan process to build in-state capacity
• Experiment with implementation approaches
 – Check-lists, analytical reports of departments
 – Better integrate with development planning process
• Toolkit to systematically apply co-benefits
 – Explicit consideration of developmental goals and their priorities
 – Explicit consideration of trade-offs and synergies
An Analytical Approach to Co-benefits

- Achieving low carbon development strongly depend on realisation of other non-carbon benefits – co-benefits
 - Local air pollution and indoor air pollution
 - Energy security
 - Sustainable transport
- But analysing and operationalising co-benefits based policies are a challenge
- Need policy tools and techniques with which to shift from rhetoric to operationalisation
Operationalising Co-benefits

• Systematic approach to co-benefits based policy making
• Embed consideration of low carbon goals within mainstream development planning
• Explicit consideration of developmental goals and their priorities
 – Attention to hard-to-quantify goals
• Explicit consideration of trade-offs and synergies
• Embed in consultative procedure
Co-Benefits Analysis

E.g. Modal Shift in Transport

Description of Policy: Induce modal shift in urban transport from private to public and non-motorized transport

<table>
<thead>
<tr>
<th>Co-benefit</th>
<th>Description of benefit or cost</th>
<th>Score 1-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>Negative:</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>- Decreased vehicle manufacturing and road infrastructure may decrease growth.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Positive:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Decreased fuel demand and imports</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Public health gains and reduced congestion</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Reduced losses from fatalities and casualties</td>
<td></td>
</tr>
<tr>
<td>Inclusion</td>
<td>Improved access to mobility services for low income groups</td>
<td>5</td>
</tr>
<tr>
<td>Local Envt.</td>
<td>Lower emissions => lower health risks</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Reduced paved surface => less land pressure</td>
<td></td>
</tr>
<tr>
<td>Carbon</td>
<td>Lower GHG per passenger-km</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>
Growth
Inclusion
Local Environment
Carbon Mitigation

Modal Shift - Urban Transport
Promoting Bio-Ethanol
Promoting Bio-diesel
Final Thoughts

• Science is sufficiently clear to act
 – Insurance policy
• Climate is not only a diplomatic problem, it is a developmental problem
 – Cannot continue business-as-usual development strategies
• Negotiations moving toward national ‘contributions’ plus assessment
• India is well served by
 – Adaptation preparation
 – Co-benefits based mitigation
 – Clear monitoring, reporting and verification
Thank you!
ndubash@gmail.com